Philosophie Lexikon der Argumente

Suche  
Autor/Titel Begriff Exzerpt Metadaten
Poincaré, H.
 
Bücher bei Amazon
Synthetisches Waismann I 70
Induktion/Brouwer/Poincaré/Waismann: die Leistung der Induktion: sie ist nicht ein Schluss, der ins Unendliche trägt. Der Satz a+b = b+a ist nicht eine Abkürzung für unendlich viele einzelne Gleichungen, sowenig wie 0,333... eine Abkürzung ist und der induktive Beweis nicht die Abkürzung für unendlich viele Syllogismen (VsPoincaré).

Tatsächlich beginnen wir mit der Aufstellung der Formeln

a+b = b+a
a+(b+c) = (a+b)+c

einen ganz neuen Kalkül, der aus den Berechnungen der Arithmetik auf keine Weise abgeleitet werden kann. Aber:

Prinzip/Induktion/Kalkül/Definition/Poincaré/Waismann: …das ist das Richtige an Poincarés Behauptung, das Prinzip der Induktion sei nicht logisch zu beweisen. VsPoincaré: Aber er stellt nicht, wie er meinte, ein synthetisches Urteil a priori dar, es ist überhaupt keine Wahrheit, sondern eine Festsetzung: Wenn die Formel f(x) für x=1 gilt und f(c+1) aus f(c) folgt, so sagen wir, es sei "die Formel f(x) für alle natürlichen Zahlen bewiesen".

Wa I
F. Waismann
Einführung in das mathematische Denken Darmstadt 1996

Wa II
F. Waismann
Logik, Sprache, Philosophie Stuttgart 1976

> Gegenargumente gegen Poincaré



zurück zur Liste | > Eigenen Beitrag vorschlagen | > Haben Sie einen Fehler entdeckt? | > Export als BibTeX Datei
 
Hg. Martin Schulz, Abfragedatum 25.03.2017