Philosophie Lexikon der Argumente

Suche  
Autor/Titel Begriff Exzerpt Metadaten
Bernays, Paul
 
Bücher bei Amazon
Kontinuum Thiel I 194
Kontinuum/Bernays/Thiel: Bernays vertritt hier den klassischen Standpunkt (Aktualität): Vorstellung des Kontinuums zunächst eine geometrische Idee. Die Kritik der Konstruktivisten richte sich "im Grunde dagegen, dass durch den Begriff der reellen Zahl keine restlose Arithmetisierung der geometrischen Vorstellung geliefert wird. Es ist jedoch die Frage, ob sie tatsächlich gefordert wird.
Bernays: Nein. Es kommt auf die Gesamtheit der Schnitte, nicht auf die einzelnen Definitionen an. Die Mannigfaltigkeit der einzelnen, in einem abgegrenzten Rahmen möglichen Definitionen von Schnitten ist ja gar nicht notwendig dem Kontinuum isomorph. Die Anwendung eines intuitiven Mengenbegriffs sollte als etwas methodisch Zusätzliches gelten gelassen werden.
I 195
Es gilt, statt einer Arithmetisierung der Analysis die klassische Analysis im Sinne einer engeren Verschmelzung von Geometrie und Arithmetik aufzufassen.
(Konstruktivisten: Trennung).
Die Gegner behaupten ja nicht die Negate dieser Behauptungen, sondern sie sind der Meinung dass die Begründungspflicht bei demjenigen liegt, der eine Meinung vertritt.
I 196
Bsp Satz von der "oberen Grenze":
Alt: jede nicht leere nach oben beschränkte Menge reeller Zahlen hat eine reelle Zahl als obere Grenze".
Konstruktiv, neu: Jede nicht leere nach oben beschränkte Menge reeller Zahlen mit definiter Linksklasse hat eine reelle Zahl als Obergrenze.
Def Links Klasse: Menge der rationalen Zahlen r mit r < x.
Die Neuformulierung ist eher eine Präzisierung als eine Abschwächung und der Einwand der "Unbeweisbarkeit" in konstruktiven Systemen kann nicht länger als gültig betrachtet werden.
Nochmal zur Frage "wie viele" reelle Zahlen es gibt: "halbe " Antwort: es gibt genauso viele reelle Zahlen wie es Dualfolgen gibt. (I 183f). Das suggeriert geradezu, dass es eine ganz bestimmte Anzahl geben müsse.

T I
Chr. Thiel
Philosophie und Mathematik Darmstadt 1995



zurück zur Liste | > Eigenen Beitrag vorschlagen | > Haben Sie einen Fehler entdeckt? | > Export als BibTeX Datei
 
Hg. Martin Schulz, Abfragedatum 29.03.2017